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Developing methods to incorporate protein flexibility into structure-based drug design is an important
challenge. Our approach uses multiple protein structures (MPS) to create a receptor-based pharmacophore
model of the desired target. We have previously demonstrated the success of the method by applying it to
human immunodeficiency virus-1 protease (HIV-1p). Our models, based on an apo structure, discriminated
known HIV-1p inhibitors from druglike inactive compounds and also accurately identified bound
conformations of known inhibitors. Here, we test the method by applying it to all three unbound crystal
structures of HIV-1p. We have also improved our method with denser probe mapping of the binding site
and refined our selection criteria for pharmacophore elements. Our improved protocol has led to the
development of a consistent 8-site pharmacophore model for HIV-1p, which is independent of starting
structure, and a robust MPS pharmacophore method that is more amenable to automation.

Introduction

Virtual screening and structure-based drug design (SBDD)
have become important tools in the pharmaceutical industry.1,2

An important challenge in SBDD is the incorporation of both
ligand and receptor flexibility. Protein targets are dynamic and
often cannot be adequately represented by a single, static
conformation such as a crystal structure. Instead, an ensemble
of receptor conformations representing the accessible conforma-
tions in the solution phase may be more useful for SBDD. This
is an active area of research, and many approaches have been
taken to solve this difficult problem.3-6

Previously, Carlson et al. introduced a novel method using
multiple protein structures (MPS) to create receptor-based
pharmacophore models which accounted for the protein flex-
ibility of human immunodeficiency virus-1 (HIV-1) integrase.7,8

Small molecule probes were used to map complementary
chemical functionalities onto the HIV-1 integrase active site.
Areas with a consensus of probe molecules over several protein
structures were represented as pharmacophore elements, a
“dynamic” pharmacophore model. We have further developed
this method by creating pharmacophore models of the unbound
HIV-1 protease (HIV-1p).9 Using MPS from a molecular
dynamics (MD) simulation, we identified pharmacophore
models which successfully discriminated known HIV-1p inhibi-
tors from druglike noninhibitors. In addition, our pharmacophore
models were able to accurately predict binding modes of known
inhibitors, starting with an unbound structure. It is rare to have
such success with an apo structure.

Other groups have also applied similar techniques that map
probes onto MPS. Briggs and co-workers have explored
improved techniques for mapping binding sites in alanine
racemase10 and HIV-1 integrase.11 Schechner and co-workers
have used a consensus probe approach with CHARMM to map
the ATP binding site of DNA gyrase B.12 As methods based

on MPS gain broader use and exposure for drug discovery,7-12

it is important to demonstrate the consistency and reproducibility
of such techniques. Therefore, we have applied the MPS
pharmacophore method to the other two unbound HIV-1p
structures available in the Protein Data Bank13 (PDB). We
demonstrate that the MPS pharmacophore method gives con-
sistent, high-performing pharmacophore models using any of
the unbound HIV-1p structures available in the PDB. We have
also developed a method for placing the small molecule probes
more densely into the target active site.14 Here, we have also
modified the parameters to incorporate this improved flooding
technique into the MPS pharmacophore method.

Computational Methods

The unliganded HIV-1p structures were obtained from the PDB
(accession codes 1HHP,15 3HVP,16 and 3PHV17). Symmetry opera-
tions were used to generate the homo dimer for each system. The
simulation details have been previously described for 1HHP and
the same procedure was used for 3HVP and 3PHV.9,18Both catalytic
aspartate residues were deprotonated in the calculations. The
AMBER619 suite of programs was used along with the AMBER94
force field.20 Each of the proteins was solvated in a TIP3P21 solvent
box and gradually heated from 50 to 298 K over 50 ps. Equilibration
was performed for 200 ps with the protein restrained to allow the
water to optimally complement the protein, followed by an
additional 200 ps of all-atom equilibration. The sampling phase of
the MD simulations was 3 ns.

Conformational snapshots were taken after the final equilibration
and every 100 ps throughout the simulations. Each snapshot of the
protein was flooded with 500 small molecule probes using an
optimized probe-placement method.14 The probes were placed into
an 18-Å sphere encompassing the entire active site. MUSIC8

calculations using the BOSS22 program were used to minimize the
small molecule probes to the protein surface. Probe-probe interac-
tions were ignored, allowing the probes to cluster against the protein
surface and reveal favorable interactions within the active site.
Benzene, ethane, and methanol were used as probes to map aro-
matic, hydrophobic, and hydrogen-bond interactions, respectively.

For each protein snapshot, clusters of probes within 10 Å of the
catalytic aspartate residues were analyzed. A cluster was defined
as containing at least 8 closely packed probes for benzene and
ethane and 12 probes for methanol. Each cluster is represented by
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a single “parent” probe which is defined as the probe in the cluster
with the lowest interaction energy with the protein. Protein
snapshots along with the parent probes were overlaid by CR
coordinates, using a standard root mean square deviation (rmsd)
alignment, and consensus clusters determined. A total of 11 snap-
shots were used for all models (1, 2, and 3 ns); the snapshots were
taken every 100, 200, or 300 ps, respectively. A consensus cluster
was required to contain at least 6 parent probes with representation
from the beginning, middle, and end of the simulation length.

The consensus clusters were represented as pharmacophore
elements. Each element was centered at the average position of
the key chemical functionality within the consensus cluster (cen-
troids of benzenes, oxygens of methanols, and midpoints of the
C-C bonds in ethanes). The radii of the pharmacophore elements
were based on the rmsd spread of the parent probes in the consensus
clusters as previously described.9 Ethane clusters were used to
clarify aromatic from hydrophobic interactions, and overlapping
benzene and ethane elements were combined and relabeled as
possessing either aromatic or hydrophobic character. Excluded
volumes were centered at the average position of the Cγ of the
two catalytic aspartate residues and simply assigned a radius of
1.5 Å. Pharmacophore elements within 9 Å of theexcluded volumes
were included in the final models.

Pharmacophore models were created using 1, 2, or 3 ns of the
MD trajectory for each structure investigated (1HHP, 3HVP,
3PHV). In a manner analogous to our previous work, the stringency
of the pharmacophore query was investigated and the radii of the
pharmacophore elements were explored. The pharmacophore
models were searched against two datasets (included in the
Supporting Information): a set of known HIV-1p inhibitors (89
entries) and a set of druglike noninhibitors (85 entries) taken from
ref 23. Each dataset contained pregenerated ligand conformers to
account for ligand flexibility. The conformations were calculated
using MOE24 and the MMFF force field.25 The creation and
composition of these datasets has been described elsewhere.9 The
pharmacophore-searching applications in MOE24 were used to
screen the pharmacophores against the two ligand datasets.

Results and Discussion

Extending the Method to Similar Starting Structures.
To demonstrate the consistency and reliability of the MPS
pharmacophore method, we have created models of HIV-1p
using different starting structures. We have chosen the three
unliganded, complete HIV-1p structures available in the PDB
(accession codes: 1HHP,15 3HVP,16 and 3PHV17). The three
structures were crystallized independently and have approxi-
mately 0.5 Å CR rmsd. The 1HHP and 3PHV structures have
identical sequences, but the 3HVP sequence differs in 5 residues,
none of which are biologically significant or confer resistance.
This is a simple and straightforward way to demonstrate the
robust nature of the MPS pharmacophore method. We expect
to identify similar pharmacophore models, despite the minor
differences inherent to independently solved structures.

Using three starting structures and three independent MD
trajectories also allows us to further generalize the selection
parameters for determining parent and consensus clusters. New
criteria were necessary to treat the clusters obtained with the
denser probe packing as described below. Using three indepen-
dent starting structures to determine these criteria ensures that
the method gives consistent resultssdemonstrating the repro-
ducibility and robust nature of the MPS pharmacophore method.

Improved Probe Placement.In the extension of the MPS
pharmacophore method to additional systems, it was recognized
that the original routine for placing probe molecules into the
active-site cavity could be improved. Initial placement of the
probes was too sparse in systems with smaller, more occluded
binding sites. To overcome this limitation, a python script was
created to work with the PyMOL26 program and densely flood

binding sites within a user-defined sphere.14 The user can also
define a cutoff to the protein that controls how close the probes
are initially placed against the protein surface. Using this
method, significantly more probes are placed in the active-site
cavity, and both positions and orientations of the probes are
more adequately sampled. With a higher density of probes, all
accessible local minima within the active site are sampled. This
more thorough mapping of the binding site helped us to identify
additional consensus clusters for the MPS pharmacophore
models. There are also more probes in each individual cluster,
making the most important interactions within the active site
easier to identify.

Refining Selection Parameters for the Elements in the
Pharmacophore Models.Because a higher number of probes
were initially placed in the active-site cavity and more probes
were present in each individual cluster, more stringent clustering
criteria were needed. In selecting clustering parameters, we did
not fit model performance to a particular set of equations; rather,
the optimal parameters were chosen through an iterative
procedure of varying parameter choices and evaluating the effect
on model performance. Various criteria for clustering probes
were evaluated, including the number of probes required to
determine a significant cluster, the number of probes required
in each consensus cluster, the stringency of pharmacophore
query, and the radius size of the pharmacophore elements.

When choosing which clusters were most significant in an
individual snapshot, we found that the optimal cutoff was 8 or
more benzene/ethane probes in a cluster and 12 or more probes
for methanol. We investigated several values for this parameter
including 5, 8, 10, and 12 probes required for a significant
cluster. The difference in requirements for methanol and the
hydrophobic probes can be attributed to the difference in their
interactions energies with the protein. This is an increase in
stringency compared to our previous application to HIV-1p
where we required 5 copies of the probe to identify a cluster as
significant.

More restrictive criteria were also used in determining the
consensus clusters from the overlaid snapshots. Originally,
consensus was defined as parent probes from at least 5 of the
11 snapshots making the same interaction. We varied this
parameter requiring 5, 6, or 7 probes to identify a consensus
cluster. Using the improved probe placement, we found that
requiring at least 6 parents was optimal. This ensures that only
the most important interactions are represented by the consensus
clusters. The requirement for representation among the begin-
ning, middle, and end of the MD simulation was also main-
tained, again ensuring we are identifying general interactions
rather than localized ones.

Using these stricter criteria reduces the subjectivity inherent
in the pharmacophore method. The studies presented here were
done “by hand” by the same authors as in the previous study.9

This allows for consistency in comparing back to our previous
work. These more stringent “by hand” models are also important
for guiding our automation efforts. The most significant clusters
are more obvious due to the larger number of probes/cluster,
allowing the user to rely less on chemical intuition. Our group
is in the process of creating automated techniques for identifying
consensus clusters.14 Well-defined algorithms and mathematical
descriptions will also reduce the subjectivity and ensure that
two users will create the exact same MPS pharmacophore
models.

Creation of Consistent Pharmacophore Models.Pharma-
cophore models were created for the three HIV-1p structures
using 1, 2, or 3 ns of the MD trajectory. The models generally
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have 8 sites; 6 of the sites are in excellent agreement with our
earlier models: two hydrogen-bond donor sites near the catalytic
aspartates and four aromatic/hydrophobic sites around the
periphery of the active site. The new 8-site models contain two
additional aromatic/hydrophobic sites near the center of the
active site. These two interior aromatic/hydrophobic sites were
not identified as consensus clusters in our earlier study of HIV-
1p, but these interior elements had been observed in individual
snapshots, just not with enough consistency to warrant inclusion
in the consensus pharmacophore models. By improving the
probe mapping within the active site, we have more thoroughly
defined the interaction surface between the protein and small
molecule probessresulting in the inclusion of additional phar-
macophore elements. The 8-site model is an enhancement of
our previous 6-site model, and the pharmacophore elements are
an excellent match with known substrate recognition motifs of
HIV-1p (Figure 1).27 Specifically, the pharmacophore elements
in the northwest and southeast quadrants interact with protein
residues Arg 8, 8′, Leu 23, 23′, and Val 82, 82′ corresponding
to the S1 and S1′ recognition pockets. Residues Asp 29, 29′,
Asp 30, 30′, and Ala 28, 28′ are part of the S2, S2′ pockets and

contact the northeast and southwest pharmacophore elements.
The interior, hydrogen-bonding elements of the pharmacophore
interact with the two catalytic aspartate residues (25, 25′), and
the hydrophobic elements contact Asp 25, 25′, Gly 27, 27′, and
Ala 28, 28′.

Figure 2 presents the MPS pharmacophore models based on
1, 2, and 3 ns of MD simulation from 1HHP, 3PHV, and 3HVP.
Coordinates and radii of the pharmacophore elements in all
models are provided as Supporting Information. A consistent
pharmacophore model is observed across the different simulation
lengths and also across the three independent starting positions.
There are minor differences among the models, but the overall
trend reveals a consistent, symmetric 8-site pharmacophore
model. Small variations were expected in the location and radii
of elements and the inclusion of hydrophobic character to an
aromatic site (i.e., green versus cyan elements in Figure 2). More
significant differences typically arise when one of the 8 sites
does not contain at least 6 parents, and so that site is not
represented in the final consensus model. On occasion, ad-
ditional elements were identified because more weakly occupied
local minima happened to provide parent probes from 6
snapshots. These extra sites are generally seen in models with
less conformational sampling like the 1HHP-1ns and 3PHV-
2ns models. We were surprised to see that the 3HVP-3ns model
contained an extra site, particularly when the 3HVP-1ns and
3HVP-2ns models contained only the common 8-site pharma-
cophore elements. However, the discussion below shows how
testing the models against the datasets of known inhibitors and
noninhibitors revealed that the inclusion of an extra site (or the
absence of one of the 8 common elements) did not significantly
degrade their selectivity and performance.

Due to the limited sampling inherent to MD, our models are
influenced by some specific side-chain conformations sampled.
The most variable pharmacophore sites are the northwest and
southeast sites (Figure 2). These sites are flanked by solvent-
exposed arginine residues (Arg 8, 8′). A high degree of
flexibility is expected for a solvent-exposed, charged side chain,
and this arginine flips freely during our simulations, pointing
out into solution or into the active-site cavity. Furthermore,
crystal structures of HIV-1p show that Arg 8 and 8′ adopt

Figure 1. Comparison of known substrate recognition elements with
the 1HHP-3ns pharmacophore model: yellow, residues making the S1,
S1′ pockets; blue, residues making the S2, S2′ pockets. Key residues
forming these pockets are labeled. Radii of the pharmacophore elements
are shown as 1× rmsd of the consensus probes, and the elements are
colored according to chemical functionality: red, hydrogen-bond
donating; green, aromatic; cyan, aromatic or hydrophobic.

Figure 2. Pharmacophore models for 1HHP, 3PHV, and 3HVP created from 1, 2, or 3 ns simulation lengths. Radii of the elements are shown as
1 × rmsd of the consensus probes and colored according to chemical functionality: red, hydrogen-bond donating; green, aromatic; cyan, aromatic
or hydrophobic; gray, excluded volume.
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different orientations in response to different bound ligands. This
flexibility influences the placement of the minimized probes
and, hence, affects the definition of the pharmacophore element.
When the arginine points into solution, it can pull the pharma-
cophore element outside the 9 Å cutoff (3PHV-1ns and -2ns),
and if it predominately points into the cavity, the element is
found closer to the catalytic residues. Additionally, if the residue
samples a wide enough set of conformations, the probe positions
become too disordered and no consensus is observed.

Testing the Pharmacophore Models.The data from our
pharmacophore screens are presented as receiver operator
characteristic (ROC) curves in which the percent of known
inhibitors identified by the model is plotted against the percent-
age of false positives predicted. In this representation of the
data, a model with no selectivity would lie somewhere on the
line with slope equal to 1, and the ideal model would lie in the
upper left corner at the point (0, 100).

As we plot each model’s ability to hit true inhibitors versus
false positives, we use the “distance” from ideal to determine
overall performance (i.e., distance) [(% known inactives)2 +
(100%- % known inhibitors)2]1/2). This metric for performance
allows us to objectively compare models from different struc-
tures and models that contain a different number of pharma-
cophore elements. It also gives us a means to evaluate the
statistical significance of our findings through cross-validation.
Each dataset was divided into 10 random subsets, and each
subset was sequentially removed from the analysis to evaluate
its contribution to the performance of the model (details are
provided in the Supporting Information). The standard deviation

obtained from the cross-validation is very low, meaning that
the performance is not grossly dependent on the nature of the
test set of inhibitors and noninhibitors.

The raw data used to generate the ROC plots is provided as
Supporting Information. As in our previous study, the number
of elements required for a match were varied (i.e., 8 of 8 sites
versus 7 of 8 sites versus 6 of 8 sites) and the radii of the
elements were varied (1× rmsd, 11/3 × rmsd, 12/3 × rmsd, 2
× rmsd, 21/3 × rmsd, 22/3 × rmsd, and 3× rmsd).9 Using
smaller radii and requiring more elements results in highly
selective models that identify almost no false positives but at
the expense of many known inhibitors. Models with large radii
and fewer required elements have the least selective perfor-
mance.

In assessing data across all three starting structures (1HHP,
3PHV, and 3HVP) and all three time lengths investigated (1,
2, and 3 ns), we found that the overall optimum protocol requires
radii for the elements to be 2.3× rmsd andn - 1 of n
pharmacophore elements to be satisfied for a hit. Specific details
comparing the best individual models are presented below.

Figure 3A provides a comparison of the performance of our
current 1HHP models to our previous 6-site models also
generated from the same 1HHP snapshots. All of the new
models show as good or better performance than our previous
results as determined by a leftward shift on the ROC plot. Due
to the greater specificity of an 8-site versus 6-site pharmacophore
model, we see a steeper initial slope, indicating that the models
are identifying fewer false positives with the most restrictive
models.

Figure 3. ROC curves for the 1HHP, 3PHV, and 3HVP pharmacophore models. The percentage of known HIV-1p inhibitors identified by the
model is plotted against the percentage of compounds from the Comprehensive Medicinal Chemistry Index (false positives). (A) Comparison of
previous screening results for a 6-site model of 1HHP (black) with results for the 1HHP from the current work (cyan). The 1, 2, and 3 ns models
for 1HHP are shown simultaneously. (B) Details of the 1HHP results: blue, 1s; red, 2s; black, 3 ns. (C) 3PHV. (D) 3HVP.
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We were pleased to find that the best pharmacophore models
from all 3 MD simulations were similar to our previous findings
(Figure 3). Again, the optimal radii were approximately 2×
rmsd and tight stringency was also required. The optimal models
required a molecule to match 7 of the 8 sites to be counted as
a “hit” and predicted 84-92% of the known inhibitors correctly
with a false positive rate of 7-15%. The false positives
identified were examined and found to contain the same renin
inhibitors, small hydrophobic peptides, and peptidomimetics that
were observed in our previous work.9 Of course, renin inhibitors
and peptide mimics should be identified as potential inhibitors
by our models.

In this study, we do not see the same improvement with
increasing simulation length as previously reported. Previously,
the longer simulations sampled additional protein conformations
and also probe positions. By improving the initial probe
placement, we are able to identify consensus with less MD
samplingswhich can significantly speed up the MPS procedure.
We should note that other protein systems that we are
investigating still show improvement with longer MD simula-
tions,14 and this characteristic may be system dependent. Using
multiple protein structures is still necessary, as pharmacophore
models derived from a single static structure are inconsistent
across different starting structures and are not reasonable for
drug discovery (see Supporting Information).

We have analyzed the subtle differences between the indi-
vidual pharmacophore models. The 1HHP-1ns model actually
has 10 sites. Despite the inherent difficulty of a molecule fitting
all 10 sites, the model shows good performancesthe optimal
model identifies 92% known inhibitors with a false positive rate
of only 14% (8/10 sites, 21/3 × rmsd). In the 1HHP-2ns and
1HHP-3ns models, the two extraneous sites “disappear” as
greater sampling of the protein is achieved. Interestingly, the
3PHV-1ns pharmacophore model has only 7 sites; it is missing
the hydrophobic site corresponding to the S1 recognition pocket
(southeast element) that is influenced by the Arg 8 conformation.
Conversely, the 3PHV-2ns model is missing the northwest site
which again is influenced by the mobility of the Arg 8′ residue.
However, the 3PHV model does converge to 8 sites by 3 ns. In
the case of 3HVP, it is the 3 ns model that has an extra site
while the 1 and 2 ns models fit the common 8-site template.
Despite these minor differences, all of the pharmacophore

models show good performance and successfully discriminate
known HIV-1p inhibitors from inactives (Figure 3B-D).

A significant goal of this work was to develop parameters
for the MPS method that are robust and consistent among similar
starting structures. The current MPS pharmacophore method is
very successful but quite time-consuming and labor intensive.
The user must identify clusters from each MD snapshot and
then combine the resulting parent probes. Next, the user must
identify which parents are in consensus to create the MPS
pharmacophore elements. To improve the method for use by
the entire scientific community, we are in the process of
automating the method of pharmacophore determination.14

However, an automated method lacks a user’s chemical intuition
and may miss one pharmacophore element or add an extraneous
element. We have shown that our models are robust enough to
provide good performance, even when they deviate from the
ideal.

Creating a Consensus of Consensus Model.By combining
all the conformational information gained through the three
independent MD simulations of the three crystal structures, we
created a “consensus of consensus” pharmacophore model. The
3-ns pharmacophore models from each simulation were overlaid
and the pharmacophore elements recalculated by averaging all
the original probes from the MUSIC simulations (Figure 4).
As our 3-ns models are already highly similar, it is not surprising
that we see the same 8 sites in our consensus of consensus
model. The most variation in element sites is again found in
the northwest and southeast sites, as is reflected in the larger
radii at those positions compared to the northeast and southwest
elements. The consensus of consensus model has larger radii
in general and shows the symmetry one would expect given a
homodimeric protein structure. Coordinates, radii, and raw
screening data for the consensus of consensus model are
provided as Supporting Information.

Again, this consensus of consensus model shows excellent
performance in discriminating known HIV-1p inhibitors from
false positives (Figure 5). The optimum consensus of consensus
model identifies 88% known inhibitors with a false positive rate
of 8% (1× rmsd, 6/8). This model uses different specifications
than the optimal models from the individual MD simulations.
With the consensus of consensus model, a less stringent query
is combined with the smallest radii size to give the best

Figure 4. Creation of the “consensus of consensus” model: (left) overlay of the 3-ns pharmacophore models from 1HHP, 3PHV, and 3HVP;
(right) resulting consensus of consensus pharmacophore model. Pharmacophore elements are colored according to chemical functionality: red,
hydrogen-bond donating; green, aromatic; cyan, aromatic or hydrophobic; gray, excluded volume.
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performance, although there is a cluster of various models which
all demonstrate good selectivity (Figure 5). The best 7/8 model
has radii of 12/3 × rmsd, identifying 91% of inhibitors and only
14% of noninhibitors. The best 8/8 model had 21/3 × rmsd radii,
identifying 80% of inhibitors and 13% noninhibitors. Again,
the pattern is seen that larger radii are needed when more
elements are required. These three optimal, consensus of
consensus models (requiring 8/8, 7/8, and 6/8 elements and
shown in black in Figure 5) have the same excellent performance
as seen for the individual models from 1, 2, and 3 ns of MD
for 1HHP, 3PHV, and 3HVP.

Conclusions

We have extended the MPS method by studying three
unbound HIV-1p structures and demonstrating the consistency
of the method. Using three similar but unique starting structures
and three independent MD trajectories of the unbound HIV-
1p, we obtained nearly identical pharmacophore models each
with excellent performance in discriminating known inhibitors
from chemically similar noninhibitors. Thus, the MPS method
is not overly dependent on a specific starting conformation or
particular MD trajectory. On the basis of this work, we would
recommend MPS pharmacophore queries requiringn - 1 of n
of the pharmacophore elements with radii of 2.3× rmsd. We
have further demonstrated that models that have an additional
site or are missing a site continue to show good performance.
This is encouraging as we automate our pharmacophore methods
with the goal of providing an easy-to-use MPS pharmacophore
method to the greater scientific community.

We chose unbound structures for this study to further probe
our notable success with structure-based drug discovery from
apo structures. However, it is also important to test the MPS
method using bound structures of HIV-1p. At this time, there
are over 170 high-resolution crystal structures of bound HIV-
1p, and we are wrestling with the sizable task of combining
these structures in statistically meaningful ways. We are also
comparing the use of multiple crystal structures to ensembles
of conformations from NMR studies.
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